A nutrient is a chemical that an organism needs to live and grow or a substance used in an organism's metabolism which must be taken in from its environment.[1] They are used to build and repair tissues, regulate body processes and are converted to and used as energy. Methods for nutrient intake vary, with animals and protists consuming foods that are digested by an internal digestive system, but most plants ingest nutrients directly from the soil through their roots or from the atmosphere.
Organic nutrients include carbohydrates, fats, proteins (or their building blocks, amino acids), and vitamins. Inorganic chemical compounds such as dietary minerals, water, and oxygen may also be considered nutrients.[2] A nutrient is said to be "essential" if it must be obtained from an external source, either because the organism cannot synthesize it or produces insufficient quantities. Nutrients needed in very small amounts are micronutrients and those that are needed in larger quantities are called macronutrients. The effects of nutrients are dose-dependent and shortages are called deficiencies.[3]
See healthy diet for more information on the role of nutrients in human nutrition.
Contents |
Macronutrients is defined in several different ways.[4]
Fat has an energy content of 9 kcal/g (~37.7 kJ/g); proteins and carbohydrates 4 kcal/g (~16.7 kJ/g). Ethanol (grain alcohol) has an energy content of 7 kcal/g (~29.3 kJ/g).[5]
Plants absorb nutrients from the soil or the atmosphere, or from water (mainly aquatic plants) an exception are the carnivorous plants, which externally digest nutrients from animals, before ingesting them.[6]
The chemical elements consumed in the greatest quantities by plants are carbon, hydrogen, and oxygen. These are present in the environment in the form of water and carbon dioxide; energy is provided by sunlight.[7] Nitrogen, phosphorus, and sulfur are also needed in relatively large quantities. Together, the "Big Six" are the elemental macronutrients for all organisms,[8] often represented by the acronym CHNOPS.[9] Usually they are sourced from inorganic (e.g. carbon dioxide, water, nitrate, phosphate, sulfate) or organic (e.g. carbohydrates, lipids, proteins) compounds, although elemental diatomic molecules of nitrogen and (especially) oxygen are often used.
Other chemical elements are also necessary to carry out various life processes and build structures; see fertilizer and micronutrient for more information.
Some of these are considered macronutrients in certain organisms. The mnemonic C. HOPKiN'S CaFe Mg (to be used as C. Hopkins coffee mug) is used by some students to remember the list as: carbon, hydrogen, oxygen, phosphorus, potassium, nitrogen, sulfur, calcium, iron, and magnesium. Silicon, chloride, sodium, copper, zinc, and molybdenum are sometimes also included, but are in other cases considered micronutrients.[10]
Nutrients are frequently categorized as essential or nonessential. Essential nutrients are unable to be synthesized internally (either at all, or in sufficient quantities), and so must be consumed by an organism from its environment.[11] Nonessential nutrients are those nutrients that can be made by the body, they may often also be absorbed from consumed food.[11] The majority of animals ultimately derive their essential nutrients from plants,[11] though some animals may consume mineral-based soils to supplement their diet.
For humans, these include essential fatty acids, essential amino acids, vitamins, and certain dietary minerals. Oxygen and water are also essential for human survival, but are generally not considered "food" when consumed in isolation.
Humans can derive energy from a wide variety of fats, carbohydrates, proteins, and ethanol, and can synthesize other needed amino acids from the essential nutrients.
Non-essential substances within foods can still have a significant impact on health, whether beneficial or toxic. For example, most dietary fiber is not absorbed by the human digestive tract, but is important in digestion and absorption of otherwise harmful substances. Interest has recently increased in phytochemicals, which include many non-essential substances which may have health benefits.[1]
An inadequate amount of a nutrient is a deficiency. Deficiencies can be due to a number of causes including inadequacy in nutrient intake called dietary deficiency, or conditions that interfere with the utilization of a nutrient within an organism.[3] Some of the conditions that can interfere with nutrient utilization include problems with nutrient absorption, substances that cause a greater than normal need for a nutrient, conditions that cause nutrient destruction, and conditions that cause greater nutrient excretion.[3]
Nutrient toxicity occurs when an excess of a nutrient does harm to an organism.
In plants five types of deficiency or toxicity symptoms are common:[12]
Oversupply of plant nutrients in the environment can cause excessive plant and algae growth. Eutrophication, as this process is called, may cause imbalances in population numbers and other nutrients that can be harmful to certain species. For example, an algal bloom can deplete the oxygen available for fish to breathe. Causes include water pollution from sewage or runoff from farms (carrying excess agricultural fertilizer). Nitrogen and phosphorus are most commonly the limiting factor in growth, and thus the most likely to trigger eutrophication when introduced artificially.